Gene Regulation System of Vasopressin and Corticotoropin-Releasing Hormone
نویسنده
چکیده
The neurohypophyseal hormones, arginine vasopressin and corticotropin-releasing hormone (CRH), play a crucial role in the physiological and behavioral response to various kinds of stresses. Both neuropeptides activate the hypophysial-pituitary-adrenal (HPA) axis, which is a central mediator of the stress response in the body. Conversely, they receive the negative regulation by glucocorticoid, which is an end product of the HPA axis. Vasopressin and CRH are closely linked to immune response; they also interact with pro-inflammatory cytokines. Moreover, as for vasopressin, it has another important role, which is the regulation of water balance through its potent antidiuretic effect. Hence, it is conceivable that vasopressin and CRH mediate the homeostatic responses for survival and protect organisms from the external world. A tight and elaborate regulation system of the vasopressin and CRH gene is required for the rapid and flexible response to the alteration of the surrounding environments. Several important regulatory elements have been identified in the proximal promoter region in the vasopressin and CRH gene. Many transcription factors and intracellular signaling cascades are involved in the complicated gene regulation system. This review focuses on the current status of the basic research of vasopressin and CRH. In addition to the numerous known facts about their divergent physiological roles, the recent topics of promoter analyses will be discussed.
منابع مشابه
Regulatory mechanisms of corticotropin-releasing hormone and vasopressin gene expression in the hypothalamus.
Tuberoinfundibular corticotropin-releasing hormone (CRH) neurones are the principal regulators of the hypothalamic-pituitary-adrenal (HPA)-axis. Vasopressin is primarily a neurohypophysial hormone, produced in magnocellular neurones of the hypothalamic paraventricular and supraoptic nuclei, but parvocellular CRH neurones also coexpress vasopressin, which acts as a second 'releasing factor' for ...
متن کاملCopeptin as a marker of an altered CRH axis in pituitary disease
BACKGROUND Copeptin (pre-proAVP) secreted in equimolar amounts with vasopressin closely reflects vasopressin release. Copeptin has been shown to subtly mirror stress potentially mediated via corticotrophin-releasing hormone. To further test a potential direct interaction of corticotrophin-releasing hormone with copeptin release, which could augment vasopressin effects on pituitary function, we ...
متن کاملCopeptin,as a new Boimarker
everything that disturbs the homeostatic balance of the body can be defined as stress and any stress factor activating the hypothalamic- pituitary-adrenal (HPA) axis causes an increase in arginine vasopressin (AVP) plasma concentrations. AVP is a 9 amino acid peptide in the ring structure and derived from pre-pro vasopressin. Pre-pro vasopressin is a pro hormone that synthesized by supraoptic ...
متن کاملThyrotropin-releasing hormone (TRH) inhibits vasopressin and oxytocin release from rat hypothalamo-neurohypophysial explants in vitro.
Incubation of hypothalamo-neurohypophysial explants in Locke's solution containing 28 nM/L thyrotropin-releasing hormone (TRH) resulted in an inhibition of vasopressin and oxytocin secretion during depolarization due to excess potassium. These data suggest the involvement of TRH in the regulatory mechanisms of vasopressin and oxytocin release; the inhibitory effect of TRH cannot be excluded.
متن کاملCombined use of vasopressin and synthetic hypothalamic releasing factors as a new test of anterior pituitary function.
Nine normal volunteers and 15 patients with pituitary disorders were given a combined test of anterior pituitary function using four hypothalamic releasing factors and arginine vasopressin. Rapid sequential intravenous infusions of human corticotrophin releasing factor 100 micrograms, growth hormone releasing factor 100 micrograms, luteinising hormone releasing hormone 100 micrograms, and thyro...
متن کامل